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1 Introduction

Many aspects of the matrix formulation of M-theory [1] has been discussed in the past

year. In this formulation, the compactified M-theory is described by a non-abelian Yang-

Mills theory living on the dual torus [2]. Different ways of compactification result in a

state degeneracy. For black holes this degeneracy is counted by the Bekenstein-Hawking

entropy, given by the area of the horizon. If the BPS bound is saturated, it has been

shown that the entropy corresponds to the minimum of the moduli-dependent central

charge [3]. Especially, for N = 2 black holes [4] this approach has been very fruitful.

On the other hand, for Yang-Mills theories it is rather difficult to determine the state

degeneracy and it is the aim of this letter to address this question. The central charge of

a given Yang-Mills configuration depends on the volumes of wrapped branes, which give

the moduli of the configuration. By extremizing this moduli-dependent central charge

we find the entropy (state degeneracy). We will especially focus on configurations that

correspond to 5-d black holes and the 5-d string. For finite N the 5-d string is compact

and their entropy coincides with the Bekenstein-Hawking entropy of the 4-d black hole.

In the second part we discuss the microscopic interpretation of the entropy and propose

as Yang-Mills theory the worldvolume theory a gauged KK-monopole.

2 Extremal central charges for matrix black holes

The central charge (or the BPS mass) is a functions of the moduli and the minimum gives

the entropy. Let us motivate this procedure on the supergravity side and consider the

compactification from 11 to 5 dimensions. Wrapping branes around cycles, one can think

of the moduli as the asymptotic volumes of these cycles. As we will see below, while

extremizing the moduli one has to make sure, that one only varies these cycles and keep

all others fixed. Like the internal cycles, also the moduli appear as dual pair, e.g. for

a 6-d compact space a wrapped 2-brane around a 2-cycle is dual to a wrapped 5-brane
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around a 4-cycle and a 2-brane wrapped only over a circle is dual to 5-brane wrapped

over a 5-cycle.

To be concrete let us consider the case of the 5-d black hole, which can be obtained

by wrapping three M-2-branes. The metric is given by

ds2 = −
1

(H1H2H3)2/3
dt2 + (H1H2H3)

1/3
(
dr2 + r2dΩ3

)
. (2.1)

with three harmonic functions Hi = hi + qi/r
2, where qi are the three electric charges

and the h′s parameterize the moduli space. We can always choose a coordinate system,

which asymptotically becomes the Minkowski space. Thus we can set h1h2h3 = 1 and our

solution is determined by only two moduli. The mass of this BPS black hole coincides

with the susy central charge

|Z| =
3∑
i=1

Mi = (h1h2q3 + h2h3q1 + h3h1q2)/3 = V̂ iqi. (2.2)

where V̂ i are the asymptotic volumes of the 2-cycles. Note, since the h′s are dimensionless

also the V̂ ′s have no dimensions, i.e. we have divided out proper powers of the Planck

length lp. This is also convenient, because we want to calculate the entropy (= degeneracy

of states) which should be dimensionless. Next, in extremizing this expression we have to

vary the 2-volumes (or the dual 4-volumes) and keep the other moduli fix. This means,

especially, that we have to fix the total volume of the internal space

1 = V̂ 6 = V̂ 1V̂ 2V̂ 3 (2.3)

(V̂ 6 becomes a modulus if we would wrap a brane around the complete compact space,

which is the case for an instantonic wrapped 5-brane).

Now, the entropy can be obtained by extremizing the central charge with respect to

V̂i [3], i.e.:

Sbh ∼ |Z|
3/2
min with

(
∂

∂V̂i
|Z|

)
min

= 0 . (2.4)

After replacing e.g. of V̂ 3 = 1/(V̂ 1V̂ 2) in (2.2) one finds

Sbh ∼
√
q1q2q3 , (2.5)

which coincides with the Bekenstein-Hawking entropy obtained from the area of the hori-

zon. The analog procedure can also be done for the dual configuration of the magnetic

string, which is a bound state of three 5-branes. In this case, because the mass density

saturates the BPS bound, one obtains the entropy per unit world volume (i.e. for a fixed

point on the world volume).

As next step we are going to discuss the analog procedure for the matrix model.

We want to obtain the entropy not by translating of known black hole results, but by

extremizing the Yang-Mills central charges. We do not need any information from the
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black hole or black string – the extremization yields the right result. Again, we want to

consider only special examples.

The M-theory, compactified on T d with the volume V , is described by a Yang-Mills

theory living on the dual torus with the volume and Yang Mills coupling constant

Σ =
l3dp
RdV

=
l2ds
V
, g2 =

l3(d−2)
p

Rd−3V
=
R3Σ

l6p
, (2.6)

with lp as Planck length and R is the radius of the 11th direction. Again we want to use

dimensionless quantities and define

ĝ2 =
g2

ld−3
s

=

(
ls

lp

)d−3
1

V̂d
, Σ̂d =

Σd

lds
=

(
ls

lp

)d
1

V̂d
, (2.7)

where V̂d = Vd/l
d
p ; l2s = l3p/R. Then the central charges can be written as integrals over

the dual Yang-Mills d-torus:

Ẑ12 = 1
ĝ2

∫
ω̂ ∧ F = 1

ĝ2 Σ̂
d−2 m12 (transversal 2-brane)

Ẑ1234 = 1
ĝ2

∫
ω̂ ∧ F ∧ F = 1

ĝ2 Σ̂
d−4 k1234 (wrapped 5-brane)

Ẑ0 = 1
ĝ2

∫
ω̂ = Σ̂d

ĝ2 N (0-branes)

Ẑ i = 1
ĝ2

∫
ω̂ ∧ e = 1

ĝ2 Σ̂
d−1 pi (longitudinal 2-brane)

(2.8)

where we introduced
∫
ω̂d = Σ̂d, the flux number m12 (

∫
T 12 F = m12), the instanton

number k1234 (
∫
T 1234 F ∧ F = k1234) and the momentum pi (

∫
T i e =

∫
F0jFij + .. = pi)

(where the integrals include the traces, see also [15]). These central charges coincide with

the expressions of the sugra side. Consider, e.g., the transversal 5-brane and using (2.7)

we find

Ẑ1234 =

(
ls
lp

)(
R

lp

) (
V 1234

l4p

)
k1234 =

(
ls
lp

)
R̂ V̂ 1234k1234 . (2.9)

This is the known central charge (or mass) contribution of a transversal 5-brane, up to the

prefactor ls/lp which is a consequence of using different parameters to get dimensionless

central charges. Introducing again the mass dimensions, both central charges are identical

ZYM =
ẐYM
ls

=
Ẑgrav
lp

= Zgrav . (2.10)

The same procedure can be repeated for the other central charges in (2.8).

Analog to the black holes we will now build bound states and extremize the total

central charge. We will start with the analog configuration to the 5-d black hole (2.1),

which is a threshold bound state of three 2-branes. Adding up the contributions, the

total central charge is given by

Ẑ =
∑
i

Ẑ i =
1

ĝ2

∫
VΣ

ω ∧ F =
1

ĝ2
(Σ̂1Σ̂2m3 + Σ̂2Σ̂3m1 + Σ̂3Σ̂1m2) , (2.11)
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with i = 1, 2, 3 counting the different fluxes (m1, m2, m3) ≡ (m12, m34, m56) through the

different 2-tori Σi.

As for the black holes we have to vary only the moduli related to this configuration

and keep all others fix, i.e. we vary only 2- or 4-cycle volumes. Especially we have to keep

fix the total volume of the Yang-Mills torus and the Yang-Mills coupling constant

Σ̂1Σ̂2Σ̂3 = Σ̂6 = 1, ĝ = 1. (2.12)

Using this relation the minimum of (2.11) is given:

SYMbh ∼ |Ẑ|3/2min =
√
m12m34m56 , (2.13)

which coincides with the black hole entropy (2.5) (flux numbers in the matrix model

correspond to the membrane charges).

As second example we consider the pure 5-brane configuration (5× 5× 5), where the

5-branes are wrapped around 4-cycles which pairwise overlap on 2-cycles. This threshold

bound state has the total central charge: ((Ẑ1, Ẑ2, Ẑ3) ≡ (Ẑ1234, Ẑ1256, Ẑ3456))

Ẑ =
∑
i

Ẑ i =
1

ĝ2

∫
VΣ

ω ∧ F ∧ F =
1

ĝ2
(Σ̂1k1 + Σ̂2k2 + Σ̂3k3). (2.14)

Again, in extremizing one has to vary only the 2-cycles, i.e. keeping fix the 6-volume and

the coupling constant like in (2.12), so that one obtains

SYMstr ∼ |Ẑ|
2
min = (k1k2k3)

2/3
, (2.15)

which is the entropy density of the magnetic string. In comparison to the black hole en-

tropy (2.13) the different power here can be understood from the different dimensionality

of the horizons, namely the 5-d black hole has an S3 horizon whereas the string an S2.

Note, for an infinite extended string it does not make sense to talk about the total horizon

– for any fixed point of the world volume the horizon is an S2.

The cases so far correspond to the infinite momentum frame, but what about the finite

N case [5]? This means for the string that the radius is finite and effectively describes

the 4-d black hole case. In this case we have to add 0-brane contributions to the central

charge in (2.14) and get

Ẑ =
1

ĝ2
(Σ̂6N + Σ̂1k1 + Σ̂2k2 + Σ̂3k3) . (2.16)

This additional contribution also implies that we have to take into account a further mod-

ulus. On the sugra side the additional modulus is the radius or better the dimensionless

quantity R̂ = R/lp. In analogy we can take on the Yang Mills side the dimensionless

string length ls/lp. But ls is implicitly contained in all Σ’s and in ĝ, because we used ls
to make these quantities dimensionless, e.g. by Σi → Σi/l2s = Σ̂i, see (2.7). Therefore, we

should replace ls, which can be done by Σ̂i → l2s/l
2
p Σ̂i. Doing this everywhere, also for

the gauge coupling, we obtain

(lp/ls) Ẑ =
1

(ls/lp)3ĝ2
((ls/lp)

6Σ6N + (ls/lp)
2(Σ̂1k1 + Σ̂2k2 + Σ̂3k3)) (2.17)
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(note Ẑ has just the inverse prefactor, because it was obtain by Ẑ = lsZ) which can be

written as

Ẑ =
1

ĝ2

(
(ls/lp)

4 Σ6N + (Σ̂1k1 + Σ̂2k2 + Σ̂3k3)
)
. (2.18)

The proper constraint is then given by

(ls/lp)
2 Σ̂1Σ̂2Σ̂3 = 1, ĝ = 1 , (2.19)

which is completely analog to the SUGRA constraint, where the 7-volume has to be fixed:

R̂V̂ 1V̂ 2V̂ 3 = (lp/ls)
2V̂ 1V̂ 2V̂ 3 = 1 . (2.20)

Note, in terms of (2.7) we could use also the V̂ ’s as moduli. Furthermore, instead of

taking ls as additional moduli one could also take g0 (the coupling constant of the 0+1

quantum mechanics) and gs on the SUGRA side. But in any case, one has to fix the

gauge coupling ĝ resp. the 4-d Newton constant on the SUGRA side.

Using this constraint and extremizing with respect to Σ̂i gives for the entropy

SY M4d−bh ∼ |Ẑ|
2
min =

√
Nk1k2k3 , (2.21)

which again coincides entropy of 4-d black holes.

The same procedure can be used also for other configurations. Considering e.g. the

configuration of 2× 5 +mom and compactify it on a T 5 we obtain for the central charge:

Ẑ = Ẑ0 + Ẑ1 + Ẑ2345 (2.22)

and after inserting the expressions and performing the minimization procedure we find:

SYMbh ∼ |Z|3/2min =
√
Npk1234 , (2.23)

which is the entropy of the 5-d black hole.

Note that this procedure is not specific to the torus compactification. It should be

applicable to much more general cases like K3 [6] or even Calabi-Yau compactifications.

What one only needs are non-trivial 2- and 4-cycles giving magnetic fluxes and instanton

numbers and their radii giving the moduli.

3 The Yang-Mills theory and the microscopic picture

In order to discuss the microscopic interpretation of the entropy (= minimum of the

central charge) we have to consider the Yang Mills theory. So far we assumed that a

Yang Mills description exists.

As long as one compactifies the M-theory up to a 3-torus, the Yang Mills theory is

well defined. However for d > 3, one has to address the non-renormalizability of the

“standard YM theory”. In recent times, one has tried to overcome this problem by

considering worldvolume theories of branes, which decouple from the bulk in a certain
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limit. Hence, they can serve as theories describing compactification for d > 3. This has

been done for d ≤ 5 by taking the worldvolume theory of the NS-5-brane [7]. In order to

obtain a d = 6 compactification one has discussed the worldvolume of the KK monopole

in 11-d [8], which has a gauge field enhancement at points where 2-cycles of the Taub-

NUT space collapse, see e.g. [9]. Since this theory contains again membranes, it has been

suggested to formulate this theory in terms of a matrix model as well [10]. However, in

recent discussion [12] it has been argued that for the “standard KK-brane” it is difficult

to see how the decoupling can go. The reason is, that in the expected decoupling limit

the brane effectively disappears leaving a space with AN−1 singularities. This can also

be described by interaction with graviton modes (0-branes in 10-d) in the compact KK-

direction. Hence, one has to find a way to decouple these modes from the brane world

volume.

As discussed in [11] the 11-d worldvolume theory of the KK monopole can be seen

as a pure gravitational brane (G-brane) and since the circular isometry has no natural

worldvolume interpretation, this is a 6-brane. There is however a subtlety with this

brane. Naively one would expect, that a 6-brane in 11-d gives raise to 4 scalars (the 4

transversal directions). However, taking into account also the degrees of freedom of the

worldvolume vector, this does not fit in known 7-d supersymmetric theories. Hence, one

has to eliminate one degree of freedom. As suggested in [12], this can be done by gauging

the circular isometry of the monopole and one obtains as Born-Infeld action

SKK ∼
∫
d7ξ k2

√
| det [∂iXµ∂jXνΠµν + k−1(Fij − kµ ∂iXν∂jXρCµνρ)] |+ SWZ , (3.1)

where Πµν = gµν−k−2kµkν, k
2 = kµkνgµν and gµν is the usual 11-d KK monopole solution

(M7×Taub−NUT ); Fij is the world volume gauge field and kµ the Killing vector related

to the isometry that has been gauged.

After this gauging the coordinate in the isometry direction (Xµ = kµ) decouples from

the brane, because Πµν is a projector on the space transversal to the Killing vector and

the 3-form potential Cµνρ is contracted with kµ. Therefore, by gauging, one (isometry)

direction has been hidden and one introduced a new parameter kµ, which scales with the

radius of the “hidden direction”. Expanding the above action one realizes that k does

not enter the gauge field coupling 1/g2 = M3
P l. On the other hand k acts as a coupling

constant, like the dilaton in D = 10. Thus, taking the limit k →∞ keeps the worldvolume

gauge theory, but suppresses all interactions, especially it decouples the bulk theory. In

order to make this statement more explicit, one has to couple the above action to 11-d

SUGRA, e.g. by considering the theory S = S11 + SKK and investigates the equations

of motion (see [12]). In any case sending k → ∞ one has suppressed all gravity. This

procedure is very similar to the NS-5-brane worldvolume theory discussed in [7], which is

a string theory that decouples from the 10-d bulk theory in the limit of vanishing string

coupling and finite string mass. Similar here, the field theory (3.1) decouples from the

bulk in the limit of vanishing membrane coupling 1/k and finite Planck mass.

For this decoupling it is essential, that one considers the 11-d KK action, i.e. (3.1)

contains the 11-d metric and C-field. Compactifying this theory yields in 10-d the known
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6-brane solution with k giving the dilaton. But since one has to rescale the metric in

going from 11 to 10 dimensions, the 10-d Yang-Mills coupling is dilaton dependent! Note,

coming from the 10-d 6-brane one has to decompactify it in a non-trivial way, where the

11th direction decouple from the brane (and also corresponding gravitons moving along

this direction).

Now we can start with the discussion of the microscopic picture yielding the Yang-

Mills entropy discussed in the last section. We will not identify all states neither we

discuss the complete U -duality group. Instead, our aim is to give arguments why the

entropy formulae are related to the degeneracy of states. For the black holes / black

strings this has been done using D-brane techniques, but for the Yang-Mills formulation

our understanding is still not yet complete.

The M-theory compactification of 5×5×5 is described by a bound states of instantons

only. For this configuration the Wess-Zumino part, that has to be added to the Born-

Infeld action, contains [13]

SWZ =
∫
C3 ∧ Tr(F ∧ F ) , (3.2)

where C3 is the 3-form potential. Since a 5-brane corresponds to a non-trivial instanton

configuration, it is a source for a (instantonic) membrane on the world volume theory.

However this brane is not the usual localized brane, instead it is smeared over a certain

region of space time which is mainly given by the instanton size. In the limit of vanish-

ing instanton size the source becomes singular and represents a “standard” membrane

lying inside a 6-brane. This is in complete analogy to strings appearing in a 5-brane for

vanishing instanton size [14].

It is now tempting to do the microscopic state counting in terms of these brane states,

e.g. the instanton number translates into the charge of the membrane or equivalently the

number of parallel membranes. Following this procedure, the configuration yielding the

entropy (5× 5× 5 +mom) corresponds in the Yang-Mills picture for vanishing instanton

size to a configuration of three membranes intersecting over points. The state degeneracy

of the instanton bound state should coincides with the state degeneracy of the membrane

bound state, which counts the possibilities of wrapping three membranes around 2-cycles

of the 6-torus. In the Yang Mills picture the longitudinal momentum modes counted by

N give the rang of the U(N) group. In the analog brane picture for small instantons, it is

suggestive to see these modes as 6-branes wrapping the complete T 6. By this procedure,

one can reduce the entropy counting to a brane counting using the D-brane technique.

Let us discuss this procedure more explicit for theM-theory configuration 2×5+mom

with the 11th direction lying along the common worldvolume of the 2- and 5-brane (see

also [15], [16]). In the infinite momentum frame this case correspond to the 6-d dyonic

string and for finite N the string becomes compact and gives the 5-d black hole. In this

case we have to consider a 5+1 dimensional Yang-Mills theory. The translation is now

as follows: the (SUGRA) 5-brane corresponds to an instantonic strings and the 2-brane

to momentum modes traveling along this string and the momentum is translated to the

number of (YM) 5-branes. Therefore, the state counting is reduced to a counting of
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momentum modes for a string. Again we can argue, that for shrinking instanton size we

obtain the known brane configuration of a string lying inside a 5-brane. The statistical

entropy that counts string states is Sstat. = 2π
√
cp/6, where c = 3/2Deff and Deff is

the effective dimension where one can distribute the momentum modes counted by p. In

our case Deff is given by the dimension of the moduli space of k strings (=number of

instantons) inside of N 5-branes, which is given by [13] Deff = 4k(N + 1). As result

the statistical entropy is given by Sstat = 2π
√
k(N + 1)p and coincides for large N with

(2.23).

In conclusion, the aim of this letter was to discuss the state degeneracy (or entropy) in

matrix models. Following analog procedures from supersymmetric black holes, we argued

that the entropy is given by the minimum of the moduli-dependent central charge. In the

second part we discussed a way to count the microstates for the Yang-Mills configuration.

The main tool was to employ the fact, that the Yang-Mills fields act as sources for new

branes. The degeneracy of these brane configuration can be counted by using the D-

brane technique. Note, we were counting Yang-Mills states and not the states of the

supergravity side! For this counting we only used the facts: (i) that the Yang-Mills

configuration is equivalent to intersecting brane configuration for vanishing instanton size

and (ii) that the degeneracy of states should not alter if we shrink the instanton size.

As 7-d Yang-Mills theory that is needed for the T 6 compactification, we discussed the

world volume theory of a gauged 11-d KK-monopole. The gauging effectively introduces

a membrane coupling constant and in the limit of vanishing coupling the 6+1 dimensional

field theory decouples from the bulk.
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